II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

APPLIED MECHANICS
 (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Two forces of 80 N and 70 N act simultaneously at a point making an angles with horizontal of 40° and 30° respectively. Find the resultant force.
b) Explain how will you reduce the system of coplanar, nonconcurrent forces to a force and a couple.

OR
2. a) A 100 kg box is shifted by two persons, one pulling it exerting a force of 200 N inclined at 20° to the horizontal and another pushing it from behind by exerting a force of 150 N inclined at 10^{0} to the horizontal. Determine the resultant force acting on the box as shown in Fig. 1.

Fig. 1
b) State and explain triangle law of forces, polygon law of forces.

UNIT - II

3. a) Write briefly about types of supports, loads and beams.
b) Two smooth cylinders with diameters 250 mm and 400 mm respectively are kept in a groove with slanting surfaces making angles 60° and 30° as shown in the Fig. 2. Determine the reactions at contact points A, B and C .

Fig. 2
OR
4. a) Find the reactions for the simply supported beam for Fig.3. 7 M

Fig. 3
b) A cantilever beam AB of span 4 m , which is fixed at A and free at B. It carries uniformly distributed load of $16 \mathrm{kN} / \mathrm{m}$, 2 m from point A . It carries point load of $20 \mathrm{kN}, 12 \mathrm{kN}$ and 10 kN at distance of $2 \mathrm{~m}, 3 \mathrm{~m}$ and 4 m from point A. Determine the reactions at A.

UNIT-III

5. a) A truss is loaded as shown in Fig. 4. Find the forces in 7 M members $A B, B D$ and $B C$. $A C=6 m$

Fig. 4
b) Find the forces in members EC, DC and DH of the truss shown in Fig. 5.

Fig. 5
6. a) Define angle of friction and angle of repose.
b) A ladder 6 m long has a mass of 18 kg and its center of gravity is 2.4 m from the bottom. The ladder is placed against a vertical wall so that it makes an angle of 60° with the ground. How far up the ladder can a $72-\mathrm{kg}$ man climb before the ladder is on the verge of slipping? The angle of friction at all contact surfaces is 15°.

UNIT - IV

7. a) Find the centroid of the L- section shown in Fig.6.

Fig. 6
b) Derive an equation for moment of inertia of a Rectangle.
8. a) Determine moment of inertia of given Fig. 7 about centroidal XX axis.

Fig. 7
b) Determine the centroid of the quarter-circle whose radius is R.

UNIT - V

9. a) Two trains P and Q leave the same station on parallel lines. Train P starts at rest with uniform acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ attains a speed of $10 \mathrm{~m} / \mathrm{s}$. Further the speed is kept constant. Train Q leaves 30 seconds later with uniform acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$ from rest and attains a maximum speed of $20 \mathrm{~m} / \mathrm{s}$, when will train Q overtake train P.
b) A ball is thrown vertically upwards from the ground with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. Determine i) the maximum height reached by the ball, ii) the time taken to reach the maximum height, and iii) the total time of flight.

OR
10. Two blocks A and B are connected with an inextensible 14 M but flexible string, as shown in Fig.8. Let the system be released from rest. Determine the velocity of the block A after it has moved a distance of 0.7 m . Assume that the coefficient of friction between block A and the plane is 0.31. The masses of the blocks are $\mathrm{m}_{\mathrm{A}}=95 \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{B}}=143 \mathrm{~kg}$.

Fig. 8

